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Abstract. We prove a Ryser type theorem for Latin cubes, and prove a
partial Evans type result likewise for Latin cubes. We also give an example of
a very sparse incompletable Latin cube.

1. Introduction

Four central theorems in the theory of Latin squares are Hall’s theorem on the
existence of Latin squares [5], Ryser’s theorem [10], Smetaniuk’s theorem [11] and
Evans’ theorem on finite embeddability [4].
For higher dimensional Latin structures, Cruse [2] has shown that any finite

partial Latin hypercube can be embedded in a finite Latin hypercube, which is an
analogue of Evans’ theorem for arbitrary dimension, but the bound that he obtains
on the size of the Latin hypercube to embed in is probably not best possible.
For the three other theorems, no corresponding generalisations to higher di-

mensions are known. In fact, some natural generalisations of the aforementioned
theorems do not hold. For example, an n × n × k partial Latin cube may not be
completable to a full Latin cube. Kochol [7] produced examples of incompletable
n×n× k partial Latin cubes (PLC:s) for n2 < k ≤ n− 2, and conjectured that any
n× n× (n2 − 1) partial Latin cube is completable.
However, McKay and Wanless [9] has given examples of a 5×5×2 and a 6×6×2

incompletable partial Latin square, thus disproving Kochol’s conjecture. In general,
therefore, there is no hope of completing even a PLC consisting of two complete
layers to a full Latin cube.
In the present paper we will, in the spirit of Ryser’s theorem, find conditions for

when a k × ℓ×m PLC can be extended to a k × ℓ× n PLC, and subsequently, to
a k × n× n PLC. We can thus start with a block, extend it in one dimension, and
then extend in a second dimension, but we are not yet able to extend in the third
dimension.
We will also investigate the analogue of Smetaniuk’s theorem in three dimensions,

obtaining partial results.

2. Ryser’s theorem revisited

In what follows, we shall make use of the simple fact that a balanced bipartite
graph B on 2n vertices has a complete matching if δ(B) ≥ n

2 , and, in general, a
t-factor if δ(B) ≥ n

2 + t− 1.
A k× ℓ×m Latin box is a k× ℓ×m partial Latin cube where all cells are filled.

The set of symbols used are [n] unless stated otherwise.

Lemma 2.1. Let A be a k × ℓ×m Latin box. If m+ 2ℓ+ 2k − 4 ≤ n, then A can
be completed to an k × ℓ× n Latin box.
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Proof. A consists of kℓ columns of lengthm, in k layers. Let Ci,j be the j:th column
in the i:th layer. Let the corresponding symbols used in these columns be σi,j .
We form for each Ci,j a bipartite graph Gi,j with symbols [n] \ σi,j on one

side and rows m + 1, . . . , n on the other side of the bipartition, where an edge
(r, s) is present if symbol s can be placed in row r without creating a conflict.
We complete columns C1,1, C1,2, . . . , C1,ℓ, C2,1, . . . , Ck,ℓ in this order. Completing
column Ci,j is equivalent to finding a complete matching in Gi,j . It holds that
δ(Gi,j) ≥ n−m−(i−1)−(j−1), since we have to take into account the symbols used
in C1,j , . . . , Ci−1,j and Ci,1, . . . , Ci,j−1. Since i ≤ k, j ≤ ℓ and m+2ℓ+2k− 4 ≤ n,
it holds that δ(Gi) ≥

n−m
2 , so we can find a matching in Gi,j , and thus complete

column Ci,j without conflicts with C1,j , . . . , Ci−1,j and Ci,1, . . . , Ci,j−1. �

Corollary 2.2. Let A be a 2× 2×m partial Latin cube. If m ≤ n− 4, then A can
be completed to a 2× 2× n partial Latin cube.

Proof. Set k = 2, ℓ = 2 in Lemma 2.1. �

If m = n − 2 the corollary doesn’t hold. A concrete example of this is if the
symbol sets used are [n] \ σ1,1 = {1, 2}, [n] \ σ1,2 = {1, 3}, [n] \ σ2,1 = {1, 2} and
[n] \σ2,2 = {2, 3}. Note that the Ryser condition is satisfied in every 2-dimensional
layer.
If k = n − 3 the result probably still holds, but we would have to choose our

matchings more carefully. In general, Lemma 2.1 is most likely not best possible.
Before we look at when a k× ℓ× n Latin box extends to a k× n× n Latin box,

we give an if-and-only-if condition on when a k× n× n− 1 Latin box extends to a
k × n× n Latin box, and before we go for full generality, we prove the special case
k = 2, ℓ = 2, in the hope that the proof idea will be more transparent.

Proposition 2.3. A k× (n−1)×n partial Latin cube is completable to a k×n×n
partial Latin cube iff for each column each symbol is used exactly k − 1 times.

Proof. Observe that the top and bottom layer of each column have n− 1 symbols
out of n, so the only possible sizes of their overlap are n − 1 and n − 2. If in any
column this overlap is n− 1, one and the same symbol would be forced in the last
cell of both the top layer and the bottom layer, creating a conflict. The condition
is therefore necessary.
To prove sufficiency, observe that if the condition holds, each single column can

be completed in a unique way, without conflict between the two layers. Thus,
there will be no conflicts between the two layers. Also, because each layer by
itself is completable in a unique way (since they are both partial (n− 1)× n Latin
rectangles), there will be no conflicts within any of the two layers. �

Theorem 2.4. For n ≥ 14, any 2×2×n Latin box can be completed to a 2×n×n
Latin box.

Proof. Let πi,j be the permutation in the j:th row in the i:th layer for i, j ∈ {1, 2}.
We shall seek to find a derangement d such that d(π2,1(s)) 6= π1,1(s), d(π2,1(s)) 6=
π1,2(s), d(π2,2(s)) 6= π1,1(s) and d(π2,2(s)) 6= π1,2(s) for all symbols 1 ≤ s ≤ n. We
will impose some further restrictions on d, but for now, let’s suppose we’ve found
such a d.
We now complete the bottom layer up until the (n − 2):th row. In doing so,

however, we will also see to it that we avoid conflicts with d−1 ◦π2,1 and d
−1 ◦π2,2.
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For example, in the first column, we will of course have to avoid using symbols
π1,1(1) and π1,2(1), but we will also avoid symbols d

−1(π2,1(1)) and d
−1(π2,2(1)).

With these extra restrictions, since d(π2,1(s)) 6= π1,1(s), d(π2,1(s)) 6= π1,2(s),
d(π2,2(s)) 6= π1,1(s) and d(π2,2(s)) 6= π1,2(s), we can complete the bottom layer
except the last two rows, by Hall’s theorem.
The symbols not yet used in the remaining two cells of the s:th column of the

bottom layer are d(π2,1(s)) and d(π2,2(s)).
To complete the second layer, we place in row 3 ≤ j ≤ n − 3 the permutation

d−1 ◦ π1,j . Since d is a derangement, the two layers will not conflict, and since
d(π2,1(s)) 6= π1,j(s) and d(π2,2(s)) 6= π1,j(s) for all 3 ≤ j ≤ n− 3 and all s, it also
holds that d−1 ◦ π1,j will not conflict with π2,1 and π2,2.
The symbols not yet used in the remaining two cells of the s:th column of the

top layer are d−1(π1,1(s)) and d
−1(π1,2(s)).

One way (which we shall stick to) of completing the last two rows is by setting
π1,n−1 = d ◦ π2,1 and π1,n = d ◦ π2,2 in the bottom layer, and π2,n−1 = d

−1 ◦ π1,1
and π2,n = d

−1 ◦ π1,2. This means that we have to impose two further restrictions
on d, namely that d(π2,1(s)) 6= d

−1(π1,1(s)) and d(π2,2(s)) 6= d
−1(π1,2(s)).

To summarize, we need a derangement d that satisfies the following inequalities:

d(π2,1(s)) 6= π1,1(s)
d(π2,1(s)) 6= π1,2(s)
d(π2,2(s)) 6= π1,1(s)
d(π2,2(s)) 6= π1,2(s)
d(π2,1(s)) 6= d−1(π1,1(s))
d(π2,2(s)) 6= d−1(π1,2(s))

Finding d is equivalent to finding a matching in the complete bipartite graph
Kn,n with a number of edges removed. First of all, we must remove edges (i, i), since
d must be a derangement. Next, each of the inequalities above effectively specifies
a matching in Kn,n that has to be removed. In total, we remove 7 matchings from
Kn,n, yielding a graph G with minimum degree at least n − 7, so if n ≥ 14 the
minimum degree is at least n2 and we can find such a d. �

Generalizing Theorem 2.4 to completing a k× ℓ× n array will work in a similar
way.

Theorem 2.5. For n ≥ 2(ℓ2(k − 1) + ℓ(k − 1)2 + 1), any k × ℓ× n Latin box can
be completed to a k × n× n Latin box.

Proof. Let πi,j be the permutation in the j:th row in the i:th layer. For 2 ≤ i ≤ k
we shall seek to find a set of derangements di such that di(πi,j1(s)) 6= π1,j2(s) and
in general di1(πi1,j1(s)) 6= di2(πi2,j2(s) for i1 6= i2, 1 ≤ j1, j2 ≤ ℓ and for all s. The
condition di1(πi1,j1(s)) 6= di2(πi2,j2(s) means in particular that the derangements
are mutual derangements. For ease of notation in the sequel, we also set d1 = id.
Again, we will impose some further restrictions on the di, but for now, let’s suppose
we’ve found such a set of di.
We now complete the bottom layer up until the (n− (k − 1)ℓ):th row. In doing

so, however, we will also see to it that we avoid conflicts with d−1i ◦ πi,j for all
2 ≤ i ≤ k, 1 ≤ j ≤ ℓ. By Hall’s theorem, this is possible.
To complete the first n− (k− 1)ℓ rows of the i:th layer, we place in row ℓ+ 1 ≤

j ≤ n − (k − 1)ℓ the permutation d−1i ◦ π1,j . Since di is a derangement, layers 1
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and i will not conflict, and since di(πi,j1(s)) 6= π1,j2(s) for all 1 ≤ j1, j2 ≤ ℓ and all
s, there will be no conflicts in the i:th layer. Also, since di1(s) 6= di2(s) for all s,
there will be no conflict between layers i1 and i2.
The symbols not yet used in the remaining (k − 1)ℓ cells of the s:th column of

the i:th layer are d−1i (di1(πi1,j(s))) for i1 6= i, 1 ≤ j ≤ ℓ, so we can complete the

last (k− 1)ℓ rows by setting πi,n−(k−1)ℓ+(i1−1)ℓ+j = d
−1
i ◦ di1 ◦ πi1,j for 1 ≤ i1 ≤ k,

i 6= i1, 1 ≤ j ≤ ℓ in the i:th layer.
This means that we have to impose a number of further restrictions on the di,

namely that d−1i1 ◦ di ◦ πi,j 6= d
−1
i2
◦ di ◦ πi,j for all i1 6= i2, and all 1 ≤ j ≤ ℓ.

To summarize, we need a set of k− 1 derangements di that satisfy the following
inequalities:

di1(πi1,j1(s)) 6= di2(πi2,j2(s) for i1 6= i2, 1 ≤ j1, j2 ≤ ℓ, all s
d−1i1 ◦ di ◦ πi,j 6= d−1i2 ◦ di ◦ πi,j for i1 6= i2, and all 1 ≤ j ≤ ℓ

We find the di in the natural order, starting with i = 2. Each successfully
found di then restricts the choice of the subsequent derangements. Choosing di is
equivalent to finding a perfect matching in a bipartite graph Gi ⊂ Kn,n. Gi is Kn,n
with ℓ2(i− 1)+ ℓ(i− 1)2+1 matchings removed. Thus, selecting dk is the hardest,
and this is possible if n ≥ 2(ℓ2(k − 1) + ℓ(k − 1)2 + 1). �

It is a testament to our limited knowledge of hypergraph matchings that the
above results all go to great lengths to reduce problems most naturally stated as
hypergraph problems to bipartite matching problems.

3. A multi-dimensional Evans’ conjecture

Any partial Latin square with at most n−1 entries is completable, as conjectured
by Evans, and proven by Smetaniuk. The most natural generalization of this would
be the following conjecture.

Conjecture 3.1. Let P be a partial r-dimensional Latin hypercube of order n.

Suppose that P has at most n− 1 entries. Then P is completable.

Since the proportion of filled cells dwindles rapidly as the number of dimensions
increases, it would seem most reasonable that the conjecture is, in fact, true. Per-
haps we can even allow more than n − 1 entries in P , provided of course that no
more than n− 1 of them occur in any 2-dimensional substructure? As the example
in Figure 1 shows, n − 1 is really best possible. Furthermore, the example easily
generalizes to any order and any dimension.

1
1
1
1

1

Figure 1. The first two layers of an incompletable partial Latin
cube with n entries

Smetaniuk’s proof for the 2-dimensional case cannot be used for higher dimen-
sions, and one major hurdle is the lack of knowledge about the structure of Latin
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cubes. The following lemma essentially only specifies a situation when a partial
Latin cube can be embedded in a cyclic Latin cube, but obviously, there are many
partial Latin cubes that are not this well-behaved.

Lemma 3.2. Let P be a partial Latin cube of order n. Suppose there exists a

cyclic permutation σ of the symbols 1, . . . , n such that the partial Latin square P ∗

obtained by superimposing σi−1(li) for 1 ≤ i ≤ n where li is the i:th layer of P , is
completable. Then P is completable.

Proof. P ∗ coincides with all the entries already present in the bottom layer, and
there are no cconflicts between P ∗ and any symbols already present in higher layers,
since σ is cyclic. We can therefore let P ∗ be the bottom layer. Further, let layer i
be given by σ−i(P ∗. Since σ is cyclic, and hence the σ−i are mutual derangements,
there will be no conflicts between layers, and σ−i(P ∗ will coincide with all entries
already present in layer i. �

Lemma 3.2 can be used to prove Conjecture 3.1 if we know something about
the distribution of the filled cells. An example of this is given in the following
corollary. Also, with appropriate modifications, the lemma can be extended to
arbitrary dimension.

Corollary 3.3. Let P be a partial Latin cube with at most n− 1 entries, such that
no two filled cells share any coordinate. Then P is completable.

Proof. Since no two filled cells share any coordinate, the permutation σ from
Lemma 3.2 can be found quite easily. �

A special case of Lemma 3.2 is when all entries are in one layer, in which case
we complete that layer, and use any cyclic permutation of the symbols to complete
the cube. However, even if we only have n − 1 entries, distributed between two
parallel layers, Lemma 3.2 is not enough.
We conclude this section with a result not covered by Lemma 3.2, where the

entries already present lie in two perpendicular layers.

Theorem 3.4. Let P be a partial Latin cube all of whose at most n − 1 entries
have either first coordinate 1 or second coordinate 1. Then P is completable.

Proof. Let L1 be the layer with first coordinate 1, and L2 the layer with second
coordinate 1. Further, let S = L1 ∩ L2, the spine.
By Smetaniuk’s theorem, each Li is completable separately. Suppose without

loss of generality that L1 has fewer entries than L2, and complete L2 arbitrarily.
This of course adds entries to L1, since L1 and L2 share the cells in S. We denote
by L∗ the layer L1 with the additional entries in S amended. We shall prove that
L∗ is completable, and that we subsequently can complete the whole cube.
L1 has at most ⌊

n−1
2 ⌋ entries, so by permuting rows and columns in L

∗, keeping
S in its place (though entries in S may be rearranged), we can fit all the entries in
L1 \ S in a subsquare R of dimensions ⌊

n−1
2 ⌋ × ⌊

n−1
2 ⌋.

We can assume that R occupies the first ⌊n−12 ⌋ rows of L
∗. We form R∗ by

amending to R the ⌊n−12 ⌋ entries from L
∗ occupying the first ⌊n−12 ⌋ rows. We may

then assume that R∗ fits in the first ⌊n−12 ⌋ + 1 columns of L1. We can easily fill
all the empty cells in R∗, and if we try to extend this to a completion of L1, we
find that the condition from Ryser’s theorem demands that each symbol be used at
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least ⌊n−12 ⌋+ ⌊
n−1
2 ⌋+ 1− n ≤ 0 times, which is trivially satisfied. We still need to

consider the entries in S \ R∗ that we added when completing L2. They may not
coincide with L, but if not, we just permute rows of L to make it so.
We have proven that the two layers L2 and L1 can be completed one after the

other. To extend this to the whole cube, suppose that the columns of the filled
L1 are the permutations p1, . . . , pk, . . . , pn. To fill cell (i, j, k) we use the symbol
in position s(i, 1, k) + j − 1 of pk, where s(i, j, k) denotes the symbol in position
(i, j, k).
To see that the resulting structure is a Latin cube, observe that all pk are mutual

derangements, so there will be no conflicts in the k-dimension. Since L1 and L2
have been completed to Latin squares, there will be no conflict in the i- or j-
dimensions. �

4. Concluding remarks

In the proof of Theorem 3.4 a construction of Latin cubes from two perpendicular
layers was used. This construction generalizes to arbitrary dimension. For example,
two permutations p1 and p2 can be ‘composed’ to form a Latin square L = p1 ◦ p2,
by taking p1 to be the first row and p2 the first column and, if p2(i) = s(1, j),
placing the symbol p2(i + j − 1) in cell (i, j), where i + j − 1 is taken modulo n.
The resulting Latin square will have symbols in the same cyclic order p2 in each
column, with the starting points being given by p1. Of course, the roles of p1 and
p2 can be interchanged.
The Latin squares that can be constructed in this way are exactly the Latin

squares that are isotopically equivalent to the basic cyclic Latin square, namely
with entry i + j − 1 modulo n in cell (i, j). For Latin cubes, the corresponding
construction gives more than the cyclic Latin cubes, with entry i+j+k−2 modulo
n in cell (i, j, k) but still a far cry from all Latin cubes.
We would like to pose the following problem, which seems possible to solve. We

conjecture that there indeed is such an N .

Problem 1. Find an N such that n ≥ N implies that any partial Latin cube of
order n consisting of two full parallel layers is always completable.
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